Abstract

RhoA prenylation is a critical step for the translocation of RhoA to the membrane and its activation in response to agonist-induced sustained contraction of the smooth muscle. However, the effect and role of RhoA prenylation in the spontaneously tonic smooth muscle, such as internal anal sphincter (IAS), is not known. Present studies determined RhoA prenylation and its association with the basal tone in the IAS before and after the RhoA prenylation inhibitor, geranylgeranyl transferase inhibitor GGTI-297 [N-4-[2(R)-amino-3-mercaptopropyl]amino-2-naphthylbenzoyl-(L)-leucine,TFA]. Western blot analyses of cytosolic and membrane fractions determined the effects of RhoA prenylation inhibition on the cellular distribution of the RhoA. Additional studies were performed to determine the relationship between RhoA prenylation and Rho kinase (ROCK) activity. GGTI-297 decreased prenylation of RhoA, decreased ROCK activity, and caused a corresponding fall in the IAS tone. These inhibitory effects following RhoA prenylation blockade were demonstrated to be directly on the spontaneously contracted IAS smooth muscle cells. Western blot analysis revealed high levels of RhoA in the IAS smooth muscle cellular membrane in the basal state, and GGTI-297 shifted the RhoA localization to the cytosol. RhoA prenylation may play an important role in the translocation of RhoA to the smooth muscle cell membrane leading to its activation and for the maintenance of basal tone in the IAS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.