Abstract

Notch signaling has a critical role in vascular development and morphogenesis. Activation of Notch in endothelial cells led to a senescence-like phenotype with loss of barrier function. Our objective was to understand the molecular pathways mediating this phenotype. Human primary endothelial cells increase expression of Notch receptors and ligands during propagation in vitro toward natural senescence. This senescence was induced at low passage with Notch activation. We characterized the pathways activated downstream of Notch signaling. Notch was activated by Delta-like 4 ligand or constitutively active Notch receptors and measured for cell proliferation, migration, and sprouting. Notch signaling triggered early senescence in low-passage cells, characterized by increased p53 and p21 expression. The senescence phenotype was associated with hyperpermeability of the monolayer, with disrupted vascular endothelial cadherin and β-catenin levels and localization. Consistent with changes in cell shape and contact, we demonstrated that Notch activation increases myosin light chain phosphorylation by activating Rho kinase. Inhibition of Rho abrogated Notch-induced myosin light chain phosphorylation and led to enhanced barrier function by reorganizing F-actin to β-catenin-containing cell-cell adherens junctions. Our findings show that RhoA/Rho kinase regulation by Notch signaling in endothelial cells triggers a senescence phenotype associated with endothelial barrier dysfunction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.