Abstract

The modulation of endothelial barrier function is thought to be a function of contractile tension mediated by the cell cytoskeleton, which consists of actomyosin stress fibers (SF) linked to focal adhesions (FA). We tested this hypothesis by dissociating SF/FA with Clostridium botulinum exoenzyme C3 transferase (C3), an inhibitor of the small GTP-binding protein RhoA. Bovine pulmonary artery endothelial cell (EC) monolayers given C3, C3 + thrombin, thrombin, or no treatment were examined using a size-selective permeability assay and quantitative digital imaging measurements of SF/FA. C3 treatment disassembled SF/FA, stimulated diffuse myosin II immunostaining, and reduced the phosphotyrosine (PY) content of paxillin and 130- to 140-kDa proteins that included p125(FAK). C3-treated monolayers displayed a 60-85% decline in F-actin content and a 170-300% increase in EC surface area with enhanced endothelial barrier function. This activity correlated with reorganization of F-actin and PY protein(s) to beta-catenin-containing cell-cell junctions. Because C3 prevented the thrombin-induced formation of myosin ribbons, SF/FA, and the increased PY content of proteins, these characteristics were Rho dependent. Our data show that C3 inhibition of Rho proteins leads to cAMP-like characteristics of reduced SF/FA and enhanced endothelial barrier function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.