Abstract

Mechanical deformation after congenital ureteral obstruction is traduced into biochemical signals leading to tubular atrophy due to epithelial cell apoptosis. We investigated whether Na(+)/H(+) exchanger 1 (NHE1) could be responsible for HK-2 cell apoptosis induction in response to mechanical stretch through its ability to function as a control point of RhoA and MAPK signaling pathways. When mechanical stretch was applied to HK-2 cells, cell apoptosis was associated with diminished NHE1 expression and RhoA activation. The RhoA signaling pathway was confirmed to be upstream from the MAPK cascade when HK-2 cells were transfected with the active RhoA-V14 mutant, showing higher ERK1/2 expression and decreased p38 activation associated with NHE1 downregulation. NHE1 participation in apoptosis induction was confirmed by specific small interfering RNA NHE1 showing caspase-3 activation and decreased Bcl-2 expression. The decreased NHE1 expression was correlated with abnormal NHE1 activity addressed by intracellular pH measurements. These results demonstrate that mitochondrial proximal tubule cell apoptosis in response to mechanical stretch is orchestrated by signaling pathways initiated by the small GTPase RhoA and followed by the opposing effects of ERK1/2 and p38 MAPK phosphorylation, regulating NHE1 decreased expression and activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.