Abstract

The Rho signaling pathway regulates the cytoskeleton and motility and plays an important role in neuronal growth inhibition. Here we demonstrate that inactivation of Rho or its downstream target Rho-associated kinase (ROK) stimulated neurite growth in primary cells of cortical neurons plated on myelin or chondroitin sulfate proteoglycan substrates. Furthermore, treatment either with C3 transferase (C3) to inactivate Rho or with Y27632 to inhibit ROK was sufficient to stimulate axon regeneration and recovery of hindlimb function after spinal cord injury (SCI) in adult mice. Injured mice were treated with a single injection of Rho or Rho-associated kinase inhibitors delivered in a protein adhesive at the lesion site. Treated animals showed long-distance regeneration of anterogradely labeled corticospinal axons and increased levels of GAP-43 mRNA in the motor cortex. Behaviorally, inactivation of Rho pathway induced rapid recovery of locomotion and progressive recuperation of forelimb-hindlimb coordination. These findings provide evidence that the Rho signaling pathway is a potential target for therapeutic interventions after spinal cord injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call