Abstract

This study emphasizes the importance of Rho/ROCK pathway in lovastatin-induced apoptosis as replenishment with exogenous isoprenoid, geranylgeranylpyrophosphate (GGPP), resulted in inhibition of apoptosis in cultured tumor cells. Treatment of C6 glioma cells with Toxin B and exoenzyme C3 resulted in cell death suggesting the role of geranylgeranylated protein(s) in the survival of glioma cells. Relative apoptotic death observed in cells transfected with dominant negative constructs of RhoA, Rac, and cdc42 imply Rho A as playing the major role in cell survival. Furthermore, the inhibition of Rho A kinase (ROCK), a direct downstream effector of Rho A, by Y-27632 or dominant negative of ROCK, induced apoptosis in glioma cells. These findings indicate that RhoA/ROCK pathway is involved negatively in the regulation of glioma cell death pathway. Moreover, in vivo studies of lovastatin treatment in animals implanted with C6 glioma cell tumors also resulted in smaller tumor size and induced apoptosis in the tumor tissue. The implantation of stably transfected C6 glioma cells with expression vector of C3 exoenzyme, dominant negative of RhoA and ROCK, resulted in significant smaller tumor mass, further establishing the importance of geranylgeranylated proteins, specifically RhoA and its downstream effecter ROCK, in cell survival and tumor genesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.