Abstract

Branching morphogenesis is a widely used mechanism for development [1, 2]. In plants, it is initiated by the emergence of a new growth axis, which is of particular importance for plants to explore space and access resources [1]. Branches can emerge either from a single cell or from a group of cells [3-5]. In both cases, the mother cells that initiate branching must undergo dynamic morphological changes and/or adopt oriented asymmetric cell divisions (ACDs) to establish the new growth direction. However, the underlying mechanisms are not fully understood. Here, using the bryophyte moss Physcomitrella patens as a model, we show that side-branch formation in P.patens protonemata requires coordinated polarized cell expansion, directional nuclear migration, and orientated ACD. By combining pharmacological experiments, long-term time-lapse imaging, and genetic analyses, we demonstrate that Rho of plants (ROP) GTPases and actin are essential for cell polarization and local cell expansion (bulging). The growing bulge acts as a prerequisite signal to guide long-distance microtubule (MT)-dependent nuclear migration, which determines the asymmetric positioning of the division plane. MTs play an essential role in nuclear migration but are less involved in bulge formation. Hence, cell polarity and cytoskeletal elements act cooperatively to modulate cell morphology and nuclear positioning during branch initiation. We propose that polarity-triggered nuclear positioning and ACD comprise a fundamental mechanism for increasing multicellularity and tissue complexity during plant morphogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call