Abstract

Ezrin/radixin/moesin (ERM) proteins crosslink actin filaments to plasma membranes and are involved in the organization of the cortical cytoskeleton, especially in the formation of microvilli. ERM proteins are reported to be activated as crosslinkers in a Rho-dependent manner and are stabilized when phosphorylated at their C-terminal threonine residue to create C-terminal threonine-phosphorylated ERM proteins (CPERMs). Using a CPERM-specific mAb, we have shown, in vivo, that treatment with C3 transferase (a Rho inactivator) or staurosporine (a protein kinase inhibitor) leads to the dephosphorylation of CPERMs, the translocation of ERM proteins from plasma membranes to the cytoplasm and microvillar breakdown. We further elucidated that ERM protein activation does not require C-terminal phosphorylation in A431 cells stimulated with epidermal growth factor. In certain types of kidney-derived cells such as MDCK cells, however, ERM proteins appear to be activated in the absence of Rho activation and remain active without C-terminal phosphorylation. Interestingly, microinjection of an aminoglycoside antibiotic, neomycin, which binds to polyphosphoinositides, such as phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P(2)], affected the activation of ERM proteins regardless of cell type. These findings not only indicate the existence of a Rho-independent activation mechanism of ERM proteins but also suggest that both Rho-dependent and -independent activation of ERM proteins require a local elevation of PtdIns(4,5)P(2) concentration in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.