Abstract

Escherichia coli Rho factor is required for termination of transcription at certain sites by RNA polymerase. Binding to unstructured cytosine-containing RNA target sites, subsequent RNA-dependent ATP hydrolysis, and an RNA-DNA helicase activity that presumably facilitates termination, are considered essential for Rho function. Yet the RNA recognition elements have remained elusive, the parameters relating RNA binding to ATPase activation have been obscure, and the mechanistic steps that integrate Rho's characteristics with its termination function in vitro and in vivo have been largely undefined. Recent work offers new insights into these interactions with results that are both surprising and satisfying in the context of Rho's emerging structure. These include the requirements for binding and ATPase activation by a variety of RNA substrates, dynamic analyses of Rho tracking, helicase and termination activity, and the participation of a new factor (NusG) that interacts with Rho. Models for Rho function are considered in the light of these recent revelations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.