Abstract

We calculate the momentum dependence of the $\rho^0-\omega$ mixing amplitude in vacuum with vector nucleon-nucleon interaction in presence of a constant homogeneous weak magnetic field background. The mixing amplitude is generated by the nucleon-nucleon ($NN$) interaction and thus driven by the neutron-proton mass difference along with a constant magnetic field. We find a significant effect of magnetic field on the mixing amplitude. We also calculate the Charge symmetry violating (CSV) $NN$ potential induced by the magnetic field dependent mixing amplitude. The presence of the magnetic field influences the $NN$ potential substantially which can have important consequences in highly magnetized astrophysical compact objects, such as magnetars. The most important observation of this work is that the mixing amplitude is non-zero, leading to positive contribute to the CSV potential if the proton and neutron masses are taken to be equal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.