Abstract
Dissolved organic matter (DOM) influences metal speciation in soil solutions and, hence, metal toxicity. Root-elongation experiments were conducted to examine the effect of soil solution components, such as Ca, H, and DOM, on metal rhizotoxicity. A biotic ligand model (BLM) was tested for its ability to predict the rhizotoxicity of Cd and Cu in soil extracts. It was hypothesized that the concentration of Cd and Cu bound to functional groups at the root surface estimated using a BLM would be a better predictor of rhizotoxicity than the free-metal ion activity in solution. Both metals became less toxic at higher DOM, Ca, and H concentrations. Solution speciation and the effect on root growth explained most of the variability observed in the DOM experiments, but not in the cation experiments. It was concluded that Ca and H inhibited the rhizotoxicity of both metals tested. Rhizotoxicity data correlated better with estimates of metal-root complexes that have been estimated with a BLM than with free-metal ion activity or with total metal concentrations. The BLM seems to be a promising approach for predicting metal availability in soils and for assessing the associated risk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.