Abstract

The biostimulant potential of three different organic acids (OAs) present in the rhizosphere, specifically lactic, oxalic, and citric acids, have been studied. The results showed a rapid and complete metabolism of these three acids with soil microorganisms using them as a source of carbon and energy. Biostimulation was confirmed by soil biochemical studies which showed an increase in enzymatic activities, such as dehydrogenase and phosphatase, lactic and citric acids being those that produced the greatest biostimulation. With regard to microbiota composition, amplicon sequencing of the 16S rRNA gene showed changes in the structure of soil microbial communities. Applying OAs produced a decrease in richness and diversity indices, inducing specific changes in the structure of the microbiological communities. Applying lactic acid induced rapid changes in microbiota composition at both phylum and family taxonomic levels, favoring the proliferation of microorganisms involved in its degradation and soil fertility, such as the genus Bacillus and the family Micrococcaceae. Once the lactic acid was degraded, the biodiversity tended to return to similar phyla, but specific distinctive families and genera remained, leaving a pattern of induction of taxa described as plant growth-promoting bacteria (PGPB), such as the Sinorhizobium and Lysobacter genera, and the Pseudomonaceae family. Similar behavior was found with citric acid, which favored the proliferation and dominance of microorganisms of the Clostridiaceae family, involved in its degradation, as well as microorganisms of both the Micrococcaceae and Pseudomonadaceae families which were found on day 7, leaving a similar pattern of induction as that found after the mineralization of lactic acid. On the other hand, oxalic acid induced long-lasting changes in the bacterial community composition. This was characterized by an increase in the proportion of the Burkholderiales order, which includes microorganisms involved in the degradation of this acid and microorganisms described as PGPB. This study presents evidence supporting the use of OAs as potential soil fertility inducers, due both to their effects in enhancing the dominance of taxa described as PGPB and to their stimulating soil microbial activity.

Highlights

  • Soil microorganisms, because they determine soil biochemical properties and soil physicochemical properties such as organic matter, are considered important indicators of soil fertility and productivity (Van Der Heijden et al, 2008; Liang et al, 2018)

  • Plants can establish highly specific interactions with soil microorganisms by exudation of rhizospheric compounds, among which organic acids (OAs) seem to play a key role (Teplitski et al, 2000; Jones et al, 2003; Badri et al, 2009; Adeleke et al, 2017).With this in mind, we proposed the addition of OAs in soil, used as a selective source of food capable of stimulating specific bacteria and inducing changes in soil microbiota that could have a beneficial effect on plants

  • Within the Actinobacteria phylum the Actinomycetales order maintained a relative abundance similar to that detected on day 7 12.1% higher than that of the control sample, with special stimulation of the Microccocaceae (Lt28, 8.9%; Lt7, 20.4%; Ct28, 3.4%), Microbacteriaceae (Lt28, 4%; Lt7, 2.2%; Ct28, 0.3%), and Intrasporangiaceae (Lt28, 6.8%, Lt7, 0.2%; Ct28, 0.1%) families (Figures 8, 9 and Supplementary Table S1)

Read more

Summary

Introduction

Because they determine soil biochemical properties and soil physicochemical properties such as organic matter, are considered important indicators of soil fertility and productivity (Van Der Heijden et al, 2008; Liang et al, 2018). Low molecular weight carboxylic acids (LMWOAs) play a significant part in the rhizosphere as essential factors for nutrient acquisition, mineral weathering, and alleviation of anaerobic stress in roots (Blaylock and James, 1994; Zhou et al, 2007; Wang et al, 2015; Adeleke et al, 2017). These LMWOAs (ranging from 46 to 100 Da) are characterized as weak acids that contain a chain of carbon atoms associated with at least one functional acid group (Perminova et al, 2003; Dinh et al, 2017). In a wide range of soils, the concentration of these products in soil solution ranges from 1 to 50 μM (Strobel, 2001), an upper value that is not infrequent (Fox and Comerford, 1990)

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call