Abstract

Caesalpinia spinosa, tara, is the predominant fog catcher tree in the fog forest of Atiquipa, a biodiversity hotspot ecosystem within the coastal Peruvian desert highly threatened by intense land use over time. We investigated the impact of deforestation, as well as potential effects of the tree age (juveniles vs adults) and the type of tree (recruited vs planted), on the rhizospheric microbial communities of tara growing in contrasting landscapes (conserved vs deforested) of the Atiquipa forest.We used a phospholipid fatty acids analysis approach to study the microbial community associated with tara. Additionally, we isolated and sought for native rhizospheric bacteria with plant growth promoting (PGPR) traits to be used as potential inoculants for restoration projects.Deforestation profoundly altered the chemical and biological fertility of soils. All rhizospheric microorganisms were clearly reduced in abundance by deforestation, while the age or the type of trees had no effects. Both, deforestation and tree age influenced the assemblage of microbial communities, which tightly correlated with soil pH and organic matter among other soil properties. Adult trees harboured similar microbial communities in conserved and deforested soils being potential reservoirs of native microorganisms in the degraded areas. Some selected bacterial strains showed high plant growth promoting abilities, and PGPR traits were related with the isolation source of bacteria. The knowledge about key factors structuring the rhizospheric microbiota of tara and the identification of high-performing PGPR strains, provide a solid framework to formulate inocula for their use in restoration programmes in the Atiquipa fog forest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.