Abstract

Atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) is a worldwide-used herbicide and often detected in agricultural soils and groundwater at concentrations above the permitted limit, because of its high mobility, persistence, and massive application. This study applied pot experiments to investigate the atrazine contents and speciation during the phytoremediation process by Pennisetum alopecuroides (L.) Spreng. in laterite soils. From the change of the total atrazine and bioavailable atrazine measured by diffusive gradients in thin film (DGT), P. alopecuroides significantly improved atrazine degradation efficiency from 15.22 to 51.46%, attributing to the increasing bioavailable atrazine in rhizosphere. Only a small amount of atrazine was taken up by P. alopecuroides root and the acropetal translocation from roots to shoots was limited. The atrazine speciation was significantly different between rhizosphere and non-rhizosphere, attributing to the declining pH and organic matters in rhizosphere. The relationship between pH and soil-bound/humus-fixed atrazine illustrated the pH-dependant release of the atrazine from soils and the competition between humus adsorption and uptake by P. alopecuroides. The present study reveals the important roles of soil pH and organic matters in atrazine speciation and availability in laterite soils, and provides new insights in the rhizospheric effects on effective phytoremediation of atrazine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.