Abstract

Background and aims There is evidence that the invasive grass Bromus tectorum can affect soil nitrogen (N) cycling, possibly leading to a positive plant-soil feedback. Rhizosphere priming of N mineralization could provide a mechanistic explanation for such a feedback. Methods We conducted a greenhouse study to isolate rhizosphere effects on N cycling by the invasive annual grass, Bromus tectorum L., and the native perennial grass, Elymus elymoides (Raf.) Swezey, in invaded and uninvaded soils. We compared the rhizosphere priming effect (RPE) on N mineralization by species and the distribution of N in various pools by planting treatment and soil type. Results B. tectorum had a negative RPE (�23 and �22 % in invaded and uninvaded soils, respectively), while E. elymoides had no significant RPE. B. tectorum was more competitive over E. elymoides in invaded compared to uninvaded soil. Conclusions B. tectorumhad a negative effect on soil N availability via root-mediated processes, even though its growth and competitiveness increased in invaded soils. Positive plant-soil feedback effects of B. tectorum may be mediated by aboveground inputs rather than belowground and/or depend on site-specific conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.