Abstract

Phytoremediation of soils polluted with polycyclic aromatic hydrocarbons (PAHs) has so far neglected the possible role of the ubiquitous symbiotic associations between plant roots and fungi known as arbuscular mycorrhizas. A time course laboratory experiment with clover and ryegrass grown on spiked [500 + 500 + 50 mg kg-1 of anthracene, chrysene and dibenz(a,h)anthracene] soil demonstrated for the first time that dissipation of condensed PAHs may be enhanced in the presence of arbuscular mycorrhiza [66 and 42% reductions in chrysene and dibenz(a,h)anthracene, respectively, versus 56 and 20% reductions in nonmycorrhizal controls]. Addition of a surfactant accelerated initial PAH dissipation but did not attain final PAH concentrations below those obtained with nonmycorrhizal plants. Toxicity tests (earthworm survival and bioluminescence inhibition in Vibrio fischeri) indicated that mycorrhiza reduced the toxicity of PAHs and/or their metabolites and counteracted a temporally enhanced toxicity mediated by surfactant addition. Phospholipid fatty acid profiles demonstrated that the imposed treatments altered the microbial community structure and indicated that the mycorrhiza-associated microflora was responsible for the observed reductions in PAH concentrations in the presence of mycorrhiza.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call