Abstract

Arsenic contamination in a mining area is a potential threat to the local population. In the context of one-health, biological pollution in contaminated soil should be known and understandable. This study was conducted to clarify the effects of amendments on arsenic species and potential threat factors (e.g., arsenic-related genes (AMGs), antibiotic resistance genes (ARGs) and heavy-metal resistance genes (MRGs)). Ten groups (control (CK), T1, T2, T3, T4, T5, T6, T7, T8, and T9) were set up by adding different ratio of organic fertilizer, biochar, hydroxyapatite and plant ash. The maize crop was grown in each treatment. Compared with CK, the bioavailability of arsenic was reduced by 16.2%–71.8% in the rhizosphere soil treatments, and 22.4%–69.2% in the bulk soil treatments, except for T8. The component 2 (C2), component 3 (C3) and component 5 (C5) of dissolved organic matter (DOM) increased by 22.6%–72.6%, 16.8%–38.1%, 18.4%–37.1%, respectively, relative to CK in rhizosphere soil. A total of 17 AMGs, 713 AGRs and 492 MRGs were detected in remediated soil. The humidification of DOM might directly correlate with MRGs in both soils, while it was influenced directly on ARGs in bulk soil. This may be caused by the rhizosphere effect, which affects the interaction between microbial functional genes and DOM. These findings provide a theoretical basis for regulating soil ecosystem function from the perspective of arsenic contaminated soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call