Abstract

Interactions between microorganisms and root exudates in a biobed system with vegetal (grass) cover could enhance pesticide degradation. Otherwise, a high water load may generate high concentrations of pesticides in lixiviates. We studied the effect of the vegetal cover on the degradation of a mixture of atrazine (ATZ), chlorpyrifos (CHL) and iprodione (IPR) (35 mg L -1 each) in a biobed system operated with two different hydraulic loads (0.6 and 1.2 L of tap water per day). The concentration of the pesticides and their main metabolites were measured in the lixiviates during 60 days, as well as in the biomixtures at the end of the study. Dehydrogenase activity in the biomixtures and organic acid exudation from the vegetal cover were also analysed. The vegetal cover diminished the lixiviation of pesticides and their metabolites mainly at the lower hydraulic load used. The degradation of the pesticides was high (>95%) and increased in biobeds with vegetal cover and low hydraulic load. Degradation metabolites of CHL and IPR were formed during pesticide degradation; however they were degraded in the biobed and were not detected in lixiviates at the end of the study. In general, an increase in organic acid exudation by vegetal cover was observed caused by chemical stress after pesticide application. The increase was similar at both hydraulic loads. Efficient colonisation of wheat straw by fungi was observed by confocal microscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.