Abstract

BackgroundGinseng red skin root syndrome (GRS) is one of the most common ginseng (Panax ginseng Meyer) diseases. It leads to a severe decline in P. ginseng quality and seriously affects the P. ginseng industry in China. However, as a root disease, the characteristics of the GRS rhizosphere microbiome are still unclear.MethodsThe amplicon bacterial 16 S rRNA genes and fungal ITS (Internal Transcribed Spacer) regions Illumina sequencing technology, combined with microbial diversity and composition analysis based on R software, was used to explore the relationship between soil ecological environment and GRS.ResultsThere were significant differences in the diversity and richness of soil microorganisms between the rhizosphere with different degrees of disease, especially between healthy P. ginseng (HG) and heavily diseased groups. The variation characteristics of microbial abundance in different taxa levels were analyzed. The interaction network of rhizosphere microorganisms of P. ginseng under GRS background was established. We also found that different P. ginseng rhizosphere microbial communities have multiple changes in stability and complexity through the established interaction network. Microbes closely related to potential pathogenic fungi were also identified according to the interaction network, which provided clues for looking for biological control agents. Finally, the Distance-based redundancy analysis (dbRDA) results indicated that total phosphorus (TP), available potassium (AK), available phosphorus (AP), catalase (CAT), invertase (INV) are the key factors that influence the microbial communities. Moreover, the content of these key factors in the rhizosphere was negatively correlated with disease degrees.ConclusionsIn this study, we comprehensively analyzed the rhizosphere characteristics of P. ginseng with different levels of disease, and explored the interaction relationship among microorganisms. These results provide a basis for soil improvement and biological control of field-grown in the future.

Highlights

  • Ginseng (Panax ginseng C, A, Mayer), mainly distributed in northeast China and South Korea, is known as the “King of Herbs” because of its substantial medicinal value

  • Richness and diversity of microbial communities In the bacterial analysis based on 16 S rRNA, the operational taxonomic units (OTUs) number in the GRS2 group was significantly higher than that in the healthy P. ginseng (HG) group, GRS1 group, and GRS3 group (P < 0.05)

  • By comparing the differences in the number of OTUs, observed species index and Chao1 index of each group, we found that the richness of the rhizosphere bacterial community in the GRS2 group may be significantly higher in the HG group, while the richness of the rhizosphere bacterial community in the GRS3 group is not significantly different from that in the HG group (Table 1)

Read more

Summary

Introduction

Ginseng (Panax ginseng C, A, Mayer), mainly distributed in northeast China and South Korea, is known as the “King of Herbs” because of its substantial medicinal value. Because of P. ginseng’s continuous cropping effect, the deforestation planted P. ginseng pattern was often used in China before. Dong et al BMC Microbiology (2022) 22:12 forest resources for the P. ginseng cultivation. This pattern of cultivation is no longer allowed. Due to the limitations of planting areas and planting patterns, it is more critical to improving P. ginseng’s the quality and yield for the sustainable development of the P. ginseng industry. Ginseng red skin root syndrome (GRS) is one of the most common ginseng (Panax ginseng Meyer) diseases. It leads to a severe decline in P. ginseng quality and seriously affects the P. ginseng industry in China. As a root disease, the characteristics of the GRS rhizosphere microbiome are still unclear

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call