Abstract

Groundwater co-contamination with toxic pollutants like arsenic-fluoride or lead-fluoride is a serious threat for safe rice cultivation, since major stretches of land, involved in cultivation of this staple food crop are presently experiencing severe endemic pollution from these xenobiotic combinations. Preliminary investigations established that the combined pollutants together exerted more phytotoxicity in the widely cultivated indica rice variety Khitish, compared with that exerted by the individual contaminants. Thus, an ecologically sustainable and economically viable phytoremediative strategy was designed where three aquatic plants, viz., Azolla (water fern), Pistia (water lettuce) and Eichhornia (water hyacinth) (commonly located across the co-polluted regions) were tested for their ability to rhizofiltrate the water samples that had been polluted with arsenic-fluoride or lead-fluoride. Water lettuce exhibited the highest ability to ‘clean’ both arsenic-fluoride and lead-fluoride polluted water due to its capacity of efficient phytoextraction and phytostabilization. Irrigation of Khitish seedlings with this de-polluted water appreciably reduced malondialdehyde formation, electrolyte leakage and irreversible protein carbonylation due to suppression in NADPH oxidase activity and reactive oxygen species production, compared with those in sets grown with non-treated, arsenic-fluoride or lead-fluoride contaminated water. Oxidative injuries, cytotoxic methylglyoxal synthesis and inhibition of biomass growth were ameliorated, and chlorophyll synthesis and Hill activity were increased due to reduced bioaccumulation of xenobiotics, along with the improved uptake of vital micronutrients like iron, copper and nickel. Overall, the current investigation illustrated a cheap, farmer-friendly blueprint which could be easily promulgated to ensure safe rice cultivation even across territories that are severely co-polluted with the mixed contaminants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.