Abstract
IntroductionRhizoctonia solani, the causative agent of the sheath blight disease (ShB), invades rice to obtain nutrients, especially sugars; however, the molecular mechanism via which R. solani hijacks sugars from rice remains unclear. ObjectivesIn this study, rice-R. solani interaction model was used to explore whether pathogen effector proteins affect plant sugar absorption during infection. MethodsYeast one-hybrid assay was used to identify Activator of SWEET2a (AOS2) from R. solani. Localization and invertase secretion assays showed that nuclear localization and secreted function of AOS2. Hexose transport assays verified the hexose transporter activity of SWEET2a and SWEET3a. Yeast two-hybrid assays, Bimolecular fluorescence complementation (BiFC) and transactivation assay were conducted to verify the AOS2-WRKY53-Grassy tiller 1 (GT1) transcriptional complex and its activation of SWEET2a and SWEET3a. Genetic analysis is used to detect the response of GT1, WRKY53, SWEET2a, and SWEET3a to ShB infestation. Also, the soluble sugar contents were measured in the mutants and overexpression plants before and after the inoculation of R. solani. ResultsThe present study found that R. solani protein AOS2 activates rice SWEET2a and localized in the nucleus of tobacco cells and secreted in yeast. AOS2 interacts with rice transcription factor WRKY53 and GT1 to form a complex that activates the hexose transporter gene SWEET2a and SWEET3a and negatively regulate rice resistance to ShB. ConclusionThese data collectively suggest that AOS2 secreted by R. solani interacts with rice WRKY53 and GT1 to form a transcriptional complex that activates SWEETs to efflux sugars to apoplast; R. solani acquires more sugars and subsequently accelerates host invasion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.