Abstract

ABSTRACT: Peanut (Arachis hypogea) is an important legume grain consumed by humans and utilized for effective nutrient cycling in a diverse cropping system. Areas that have been cultivated with perennial pasture for decades may have nutritional deficiencies and lack a sufficient population of atmospheric nitrogen-fixing bacteria. Molybdenum is an essential micronutrient that is part of the enzyme nitrogenase contained within symbiotic Bradyrhizobium bacteria, which are responsible for fixing nitrogen in legumes. Our objective was to evaluate the effects of application of Mo at different rates and a rhizobial inoculant on peanut growth characteristics. The experiment was conducted in the 2009/2010 growing season in a no-tillage cropping system following 20-year use as pasture [Urochloa brizantha (Syn. Brachiaria brizantha)]. The experimental design was a randomized complete block with four replicates. The main plots were characterized by peanut inoculation with Bradyrhizobium inoculant or without, and the split plots were characterized by different rates of molybdenum (0, 50, 100, and 200 g ha-1) applied to leaves in the form of ammonium molybdate. The nutritional status of plants, nodulation (number of nodules and nodule dry matter per plant), nitrogenase activity, and nitrogenase specific activity were evaluated at 45 and 64 days after emergence (DAE). The yield components and kernel yield were evaluated at the end of the growing season. Nitrogenase enzyme activity at 64 DAE approximately doubled, and the number of pods per plant was greater with inoculation than without, both of which led to greater yields of pods and kernels. In long-term pasture areas, inoculation and molybdenum fertilization greater than the currently recommended rate appear to be necessary to increase pod and kernel yield per hectare of peanut when managed under no-tillage.

Highlights

  • The Brazilian Cerrado has become one of the main agricultural production areas of the world as a result of relatively recent land development based on its favorable soil and climate characteristics

  • Molybdenum is an essential micronutrient that is part of the enzyme nitrogenase contained within symbiotic Bradyrhizobium bacteria, which are responsible for fixing nitrogen in legumes

  • Peanut yield components of the number of filled pods per plant, number of kernels perpod, pod yield, hulled-kernel yield, and kernel yield were positively affected by inoculation and Mo rate

Read more

Summary

Introduction

The Brazilian Cerrado (tropical savanna) has become one of the main agricultural production areas of the world as a result of relatively recent land development based on its favorable soil and climate characteristics. This biome covers approximately 205 million hectares and approximately 24 % of Brazilian territory (Sano et al, 2008). Crop systems in tropical regions have been characterized by intensification of the use of soils and pastures, and inadequate management practices have been widely adopted for agriculture and cattle raising. In addition to soil degradation, the use of species not suitable for local conditions, insufficient establishment of plants before grazing operations, and loss of soil fertility due to nutrient extraction by the animals are among the factors that contribute to pasture degradation (Carvalho et al, 2010; FAO, 2017)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call