Abstract

Though molecular nitrogen represents nearly 80% of the earth’s atmosphere, it is chemically inert and cannot be directly assimilated by plants. Only limited numbers of prokaryotes are able to convert the N 2 molecule into a usable form of N through a process known as biological nitrogen fixation. Rhizobia are soil bacteria able to form nodules and establish symbiosis with the roots or the stems of leguminous plants. Nitrogen fixation in legume provides important economic advantages for crop production by reducing the cost of N fertilizer. This review covers contribution of biological nitrogen fixation in agriculture, rhizobia and host-legume related factors influencing symbiotic performance. It highlights the rhizobial strain and host-legume interaction effects on N 2 fixation, soil residual nitrogen, and nitrogen and phosphorus uptake of the plant. The review aims to elucidate the approach for selection of the best rhizobia strain-legume variety combination for maximum nitrogen fixation and yield of grain legume. Variation in nodulation and nitrogen fixation frequently occur in a bacteria strain-legume cultivar specific manner. Genotype of both the host and the competing rhizobia strains have been shown to influence inoculant performance .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.