Abstract

A rapidly expanding number of prediction models is being developed aiming to improve rheumatoid arthritis (RA) diagnosis and treatment. However, few are actually implemented in clinical practice. This study explores factors influencing the acceptance of prediction models in clinical decision-making by RA patients. A qualitative study design was used with thematic analysis of semi-structured interviews. Purposive sampling was applied to capture a complete overview of influencing factors. The interview topic list was based on pilot data. Data saturation was reached after 12 interviews. Patients were generally positive about the use of prediction models in clinical decision-making. Six key themes were identified from the interviews. First, patients have the need for information on prediction models. Second, factors influencing trust in model-supported treatment are described. Third, patients envision the model to have a supportive role in clinical decision-making. Fourth, patients hope to personally benefit from model-supported treatment in various ways. Fifth, patients are willing to contribute time and effort to contribute to model input. And lastly, we discuss the theme on effects of the relationship with the caregiver in model-supported treatment. Within this study RA patients were generally positive about the use of prediction models in their treatment given some conditions were met and concerns addressed. The results of this study can be used during the development and implementation in RA care of prediction models in order to enhance patient acceptability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.