Abstract

We present simple analytic models which predict the peak X-ray emission measure and temperature attained in flares in which the chromospheric evaporation process takes place either in a single ‘monolithic’ loop or in a loop consisting of several filaments that are created successively as the energy release process proceeds in time. As possible mechanisms driving chromospheric evaporation we consider both classical heat conduction from the loop top and non-thermal electron beams. The model predictions are tested for a set of 18 well studied RHESSI microflares. The results suggest beam driven evaporation in filamented loops as being capable of accounting for the observed emission measures and temperatures though there are issues with the very high beam densities needed. On the other hand, estimates of the emission measures achieved by conductive evaporation which are derived by using the Rosner – Tucker – Vaiana (RTV) scaling law are much larger than the observed ones. Possible reasons for this discrepancy are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call