Abstract

Rheological measurements were performed to examine the behavior of thermally responsive capillary suspensions. These capillary suspensions were prepared by dispersing laponite nanoparticles in a continuous oil phase and an immiscible secondary fluid consisting of an aqueous solution of a thermogelling polymer, Pluronic F127 (PF127). The addition of PF127 (which undergoes sol-gel transition at elevated temperatures) into the secondary phase resulted in a capillary-networked suspension whose rheology can be tailored by increasing the temperature above the gelling temperature of PF127. We investigated the yielding behavior of this system using dynamic oscillatory measurements at different temperatures. These suspensions yield via a two-step process which was observed as two distinct plateaus for storage modulus in a typical plot of storage modulus versus oscillation strain. This yielding behavior is attributed to the rupturing of the bicontinuous network structure at lower strains which is followed by the breakup of particle aggregates at larger strains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.