Abstract

The effect of the network-to-molecular structural transformation with increasing phosphorus content in PxSe100-x (30 ≤ x ≤ 67) supercooled liquids on their shear-mechanical response is investigated using oscillatory shear rheometry. While network liquids with 30 ≤ x ≤ 40 are characterized by shear relaxation via a network bond scission/renewal process, a Maxwell scaling of the storage (G') and loss (G″) shear moduli, and a frequency-independent viscosity at low frequencies, a new relaxation process emerges in liquids with intermediate compositions (45 ≤ x ≤ 50). This process is attributed to an interconversion between network and molecular structural moieties. Predominantly molecular liquids with x ≥ 63, on the other hand, are characterized by a departure from Maxwell behavior as the storage modulus shows a linear frequency scaling G'(ω) ∼ ω over nearly the entire frequency range below the G'-G″ crossover and a nearly constant ratio of G″/G' in the terminal region. Moreover, the dynamic viscosity of these rather fragile molecular liquids shows significant enhancement over that of network liquids at frequencies below the dynamical onset and does not reach a frequency-independent regime even at frequencies that are four orders of magnitude lower than that of the onset. Such power-law relaxation behavior of the molecular liquids is ascribed to an extremely broad distribution of relaxation timescales with the coexistence of rapid rotational motion of individual molecules and cooperative dynamics of transient molecular clusters, with the latter being significantly slower than the shear relaxation timescale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call