Abstract
The rheology of oil-in-water (O/W) emulsions, stabilized and thickened by cellulose nanocrystals, also referred to as nanocrystalline cellulose (NCC), was investigated over broad ranges of NCC and oil concentrations. The NCC concentration was varied from 1.03 to 7.41 wt% based on the aqueous phase. The oil concentration of the emulsion was varied from approximately 10 to 70 wt%. The emulsions produced were highly stable with respect to creaming and coalescence. The emulsions were non-Newtonian in that they exhibited strong shear-thinning behavior. The rheological data were described adequately by a power-law model. The consistency index (K) and the flow behavior index (n) of the emulsions were strongly dependent on the NCC and oil concentrations. At a fixed oil concentration, the consistency index increased whereas the flow behavior index decreased with the increase in NCC concentration. A similar behavior was observed when the NCC concentration was fixed and the oil concentration was increased; that is, the consistency index increased whereas the flow behavior index decreased.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.