Abstract

Abstract Polymer composites consisting of a thermoplastic polymer forming the matrix phase and a large amount of inorganic particles (commonly referred to as fillers) or glass fibers, which are often referred to as particulate-filled polymers, are very common in the plastics and elastomer’s industries (Deanin and Schott 1974; Kraus 1965; Lubin 1969). Polymer composites are developed to achieve a set of properties not possessed by the thermoplastic polymer (i.e., polymeric matrix) alone. Polymeric matrices can be thermoplastics, which soften and behave as viscous liquids when heated to above their glass transition temperatures (in the case of amorphous thermoplastic polymers) or above their melting temperatures (in the case of semicrystalline thermoplastic polymers). Polymeric matrices can also be thermosets, which undergo a transformation from a viscous resinous liquid to a hard or rubbery solid in the presence of heat and/or curing agents. There are numerous industrial products made of particulate-filled polymeric materials; for example, thermoplastic polymers filled with mica or calcium carbonate, carbon-black-filled elastomers, thermoplastic polymers or thermosets reinforced with glass fibers or carbon fibers. The ultimate goal of adding fillers to a thermoplastic polymer and adding glass fiber or carbon fiber to a thermoset is to improve the mechanical properties of the polymer. However, fillers, glass fibers, or carbon fibers themselves usually supply little or no reinforcement since there is little interfacial interaction between a thermoplastic polymer and fillers, and between a thermoset and glass fiber or carbon fiber. This has led to the development of “coupling agents,” chemical additives capable of improving the interfacial bonds between a thermoplastic polymer and fillers, and between a thermoset and glass fibers or carbon fibers (Plueddemann 1982). The use of coupling agents for the surface modification of fillers to reinforce thermoplastics has generally been directed towards improving the mechanical strength and chemical resistance of composites by improving adhesion across the interface. When inorganic fillers or glass fibers are added to a thermoplastic polymer, the resulting material exhibits a complex rheological behavior, quite different from the rheology of neat homopolymers presented in Chapter 6.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call