Abstract

Molecular dynamics is applied to calculate diffusion coefficients of n-triacontane C30H62 using Einstein-Smoluchowski and Green-Kubo relations. The displacement 〈Δr2〉(t) has a subdiffusive part 〈Δr2〉 ∼ t α, caused by molecular crowding at low temperatures. Longtime asymptotes of 〈v(0)v(t)〉 are collated with the hydrodynamic tail t-3/2 demonstrated for atomic liquids. The influence of these asymptotes on the compliance of Einstein-Smoluchowski and Green-Kubo methods is analyzed. The effects of the force field parameters on the diffusion process are treated. The results are compared with experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.