Abstract

The rheological properties of nanocomposites with an anisotropic matrix are systematically studied. As a matrix, a 60% solution of hydroxypropyl cellulose in PEG is used. In accordance with the phase diagram, it demonstrates the LC-isotropic-state transition along the temperature scale. The solution is filled with Na-montmorillonite particles (1.0–7.5%). The rheological characteristics of solutions under steady-state shear flow, periodic (harmonic) oscillations with different amplitudes, and uniaxial extension at the constant stretching rate are investigated. Experiments are performed at various temperatures, and the properties of the system are compared with the phase state of the matrix. The viscoelastic properties of the material are described by a model with a single relaxation time. The abnormal behavior of the storage modulus in the low-frequency range is observed. When the matrix is transformed into the LC state, the yield point becomes well-defined and the shear viscosity abruptly increases with an increase in the content of the LC phase. The above-described effects are discussed in terms of the ideas that two competing structures exist in the system, one of which is formed by the LC domains of solution, while the other structure is based on the nanofiller capable of forming ordered structures. Deformation, especially longitudinal flow, facilitates self-organization of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.