Abstract

AbstractRheological properties of suspensions and ceramic glaze slurries under steady flow conditions have been considered. Colloidal forces play an important role in the rheology of such ceramic slurries. Since the potential function characterizes the rheology of colloidal systems, a new dimensionless group, viz. potential number, is introduced within a dimensional analysis representing the relative significance of the potential to the Brownian energy. In order to relate the relative viscosity to other dimensionless groups, a new model is proposed by the inclusion of an extra term in addition to that of the hard‐sphere theory owing to the fact that the presence of colloidal forces always increases the fluid viscosity with respect to that predicted by the hard‐sphere. Steady viscosity measurements have been carried out on ceramic glaze suspensions at different volume fractions, particle diameters, and shear rates. Experimental results have been used to modify the model relating the relative viscosity to the Péclet number, potential number, volume fraction, and maximum packing fraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.