Abstract

Soft Dynamics is a discrete element method that we designed to simulate the flow of dense suspensions. We use it here to simulate plane shear flows of non-Brownian grains with only short range interactions: the viscous lubrication and a steric repulsion with a tunable range. We measure a macroscopic constitutive law that can be expressed, as for dry grains, through a friction law and a dilatation law. We then analyze the contribution of lubrication and repulsion forces to the macroscopic shear stress. This allows us to identity two flow regimes: depending on the shear rate and repulsion range, the shear stress may be mainly due to either repulsion or lubrication forces. This study could be useful to model the rheological behaviour of similar particulate fluids such as foams and emulsions, which comprise bubbles and droplets interacting with lubrication and steric repulsion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call