Abstract

Printed electronics have recently attracted extensive attention due to their superior productivity to conventional semiconductor fabrication methods. To develop printing devices optimized for printed electronics, numerical studies on ink flows are often necessary, and, therefore, it is critical to provide accurate ink properties for reliable numerical results. However, it is difficult to find such data in literature since inks for printed electronics contains conductive metallic nanoparticles and they are not only non-Newtonian but expensive. Thus, we propose utilizing a microfluidic chip to investigate rheological properties of conductive inks. By using micro particle image velocimeter along with an immersion oil technique, we examine the flow characteristics of two commercial conductive inks containing Ag nanoparticles on microfluidic chips. We found that the ink flows show a stronger shear-thinning behavior as the Ag content increases. Finally, suitable rheological models applicable to numerical simulations for those inks are suggested after comparing the experimental data to frequently used rheological models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.