Abstract

This study analyzed the performance of self-compacting concrete with a paste composition that includes limestone filler and metakaolin replacing cement to design binary (75% cement and 25% limestone filler) and ternary binders (60% cement, 25% limestone filler and 15% metakaolin). Furthermore, to analyze the effect of the solid volume fraction (volume of sand and coarse aggregate) on concrete rheology, the concretes were designed using four volumes of paste (350 l, 400 l, 450 l and 500 l). Rheological tests were performed at three resting times to measure the viscosity and yield stress over time. The results indicated that the viscosity decreased by 43.3% when the cement was replaced by limestone filler and increased by 73.1% when the cement was replaced by 15% metakaolin while maintaining the limestone filler. These values were obtained as 27.6% and 62.2%, respectively, when the yield stress was analyzed. In addition, the hardened properties (mechanical behavior and durability) were studied by measuring the strengths at 28 days, as well as the electrical resistivity and ultrasonic pulse velocity over time. In this case, at 28 days the use of binary binder reduces the strength and resistivity (about 20%) and the employment of ternary binder reduces strength (15%) while increases the resistivity up to the double (when compared to the 100 C concrete). Moreover, to measure the efficiency of the concrete, a material index was designed that considers the fresh behavior, mechanical performance, durability, cost, and environmental impact. Self-compacting concretes with ternary binders provided the highest indices. The use of alternative materials, particularly metakaolin has been proven to be a good option to enhance concrete sustainable performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call