Abstract

The rheology of modified poly(acrylic acid) (PAA) solutions can be tuned by controlling the inclusion interactions between α-cyclodextrins and alkyl hydrophobes. We demonstrate three modes of control: (1) using free cyclodextrins (CD) to displace hydrophobe–hydrophobe association in hydrophobically modified poly(acrylic acid) (HMPAA) polymers—which reduces fluid viscosity, (2) using competitive inclusion interactions where stronger SDS:CD binding can be used to ‘unmask’ CD:hydropobe inclusion interactions—which increases viscosity, and (3) employing HMPAA inclusion interactions with CD groups grafted to PAA chains (CDPAA)—which produces higher viscosities than purely hydrophobic association systems at the same concentration. The inclusion association between alkyl side-group in HMPAA and CD, either free or grafted onto PAA, obeys a 1-to-1 stoichiometry at low polymer concentrations (<1 wt%). In contrast to purely hydrophobically associating polymers, the CD:hydrophobe interaction is only binary, and, therefore, these associated networks should be ideal model systems to test theoretical predictions for associative fluids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.