Abstract

Rheological properties were examined for a butadiene−styrene (BS) diblock copolymer dissolved in an S-selective solvent, dibutyl phthalate (DBP). This copolymer was composed of a deuterated B block (MB = 13.3 × 103) and a protonated S block (MS = 53.9 × 103), and the microdomain structure in the quiescent state as well as under steady shear was detected with small-angle neutron scattering (SANS). At 25 °C, a quiescently equilibrated BS/DBP system of the BS concentration = 28 wt % exhibited elastic behavior under slow, small-amplitude oscillatory shear. This elasticity reflected a bcc lattice of BS micelles with B cores and S corona. Although the B cores were in the liquid state, the thermodynamic power of segregation from the S/DBP phase forced these cores to be arranged on the lattice at equilibrium. Under steady shear, the BS/DBP system exhibited significantly non-Newtonian flow behavior. At low shear rates (γ), the steady state was attained after a significant stress overshoot followed by a thixotropi...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.