Abstract

Further strong growth of solar energy conversion based on PV (photovoltaic) technology requires constant improvement to increase solar cell efficiency. The challenge in front-side metallization of Si-solar cells is to print uniform fine lines with a high aspect ratio to achieve higher efficiencies simultaneously with a reduced consumption of raw materials. An in-depth understanding of the relationship between paste composition, rheology and screen-printed line morphology is essential. Three model pastes with similar silver content and corresponding vehicles differing in their thixotropic agent content were investigated. Rheological properties (yield stress, viscosity, wall slip velocity, structural recovery, and fracture strain) were determined using steady and oscillatory shear, as well as elongational flow rheometry. Pastes were screen-printed at various speeds through a layout screen including line widths between 20 and 55 µm. Dried fingers were analyzed with respect to line width, aspect ratio (AR) and cross-sectional area. Our investigations reveal that minor changes of thixotropic agent result in substantial variations of the paste’s flow properties. However, this only weakly affects the line morphology. Irrespective of printing speed or finger opening, AR is slightly increasing; i.e., the screen-printing process is robust against changes in paste rheology.

Highlights

  • Screen-printing is a traditional and versatile printing method [1,2]

  • We have thoroughly investigated the rheological properties of three silver pastes suitable for

  • We have thoroughly investigated the rheological properties of three silver pastes suitable for front-side metallization of Si-solar cells, and corresponding vehicles mainly differing with respect to front-side metallization of Si-solar cells, and corresponding vehicles mainly differing with respect to

Read more

Summary

Introduction

Screen-printing is a traditional and versatile printing method [1,2]. About 7.5% of global silver production is currently employed in the metallization of solar cells [12]. A constant, significant reduction of silver consumption per wafer is necessary for a further expansion of PV installation. This drives perpetual efforts to decrease the width and increase the aspect ratio and uniformity of the finger lines making up the front contacts of Si-solar cells, aiming at higher cell efficiency and lower silver consumption [13]

Methods
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.