Abstract

Curdlan is a unique (1,3)-β-D-glucan with bioactivity and exceptional gelling properties. By chemical functionalization such as carboxymethylation, the physicochemical properties of curdlan can be significantly tailored. However, how the carboxymethylation extent of curdlan affects its rheology and gelation characteristics has yet to be fully understood. Herein, we investigated the impact of the degree of substitution (DS, ranging from 0.04 to 0.97) on the rheological and gelation behavior of carboxymethylated curdlan (CMCD). It was found that CMCD with DS below 0.20, resembling native curdlan, still retained its gelling capability. As the DS increased beyond 0.36, there was a significant increase in its water solubility instead of gelation, resulting in transparent solutions with steady/complex viscosities adhering to the Cox-Merz rule. Moreover, CMCD with high DS demonstrated the ability to undergo in-situ gelation in the presence of metal ions, attributed to the nonspecific electrostatic binding. Additionally, in vitro cytocompatibility testing showed positive compatibility across varying DS in CMCD. This research offers a holistic understanding of the viscosifying and gelling behaviors of CMCD with varying DS, thereby fostering their practical application as thickeners and gelling agents in fields ranging from food and biomedicine to cosmetics and beyond.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call