Abstract

We investigate the steady and transient shear and extensional rheological properties of a series of model hydrophobically modified ethoxylate−urethane (HEUR) polymers with varying degrees of hydrophobicity. A new nonlinear two-species network model for these telechelic polymers is described which incorporates appropriate molecular mechanisms for the creation and destruction of elastically active chains. Like other recent models we incorporate the contributions of both the bridging chains (those between micelles) and the dangling chains to the final stress tensor. This gives rise to two distinct relaxation time scales: a short Rouse time for the relaxing chains and a longer network time scale that depends on the aggregation number and strength of the micellar junctions. The evolution equations for the fraction of elastically active chains and for the conformation tensors of each species are solved to obtain the total stress arising from imposed deformations. The model contains a single adjustable nonlinea...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.