Abstract

The effects of polyethylene oxide (PEO) homopolymer on the gelation behavior of a PEO100-PPO65-PEO100 triblock copolymer (Pluronic F127) were explored in aqueous solution under non-isothermal and isothermal conditions. Under non-isothermal conditions (temperature sweep test), two transition points were observed on increasing temperature, that is, at lower and upper gelation temperatures (LTgel and UTgel, respectively). Between LTgel and UTgel, F127 aqueous solutions maintained a hard gel state. Both molecular weight (MW) and PEO concentration affected these two gelation temperatures. In particular, relative molecular weight (MWrel ≡ molecular weight of PEO homopolymer/PEO segment of F127) affected LTgel. LTgel decreased on increasing PEO concentration at MWrel values of 1. On the other hand, UTgel decreased with increasing PEO concentration regardless of MWrel. Under isothermal conditions (fixed temperature between LTgel and UTgel), the effects of PEO homopolymer on the mechanical properties of F127 hard gel were systemically investigated using small and large amplitude oscillatory shear tests. In the linear viscoelastic regime, total intra-cycle stress and elastic intra-cycle stress were similar, and viscous response increased on increasing PEO concentration. However, at large strain amplitudes, hard gels showed intra-cycle stiffening but inter-cycle softening behavior. In addition, on increasing PEO concentrations, viscous nonlinearities underwent strain-rate thickening followed by strain-rate thinning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call