Abstract

Terrorist attacks occur constantly, which subsequently arouses awareness of self-protection. In order to alleviate the harm caused by sharp objects of knives and daggers, a design of flexible stab-resistant materials that are impregnated with the shear thickening fluid (STF)/multi-walled carbon nanotubes (MWCNTs) system and different texture of fabrics is presented. STF/MWCNTs are composed of polyethylene glycol (PEG 200) as the dispersion medium and silica (SiO2) of 12 nm and 75 nm as disperse phase as well as MWCNTs as supplementary reinforcement, in expectation to provide the aramid fabrics with high strengths, low critical shear rate, and a short thickening response time. The textures of aramid fabrics—plain (P), twill (T), satin (S), or basket (B) weave—are saturated in the STF/MWCNTs system. The synergetic influences of silica size and texture on tensile strength, quasi-static knife, and spike stab resistances of the STF/MWCNTs-impregnated aramid fabrics are examined. Results show that the plain aramid fabric immersed in the STF/MWCNTs system containing 12 nm SiO2(SM12) exhibit the maximum tensile strength and quasi-static knife stab resistance, 14.7 MPa and 8.9 MPa, respectively, which is 1.15 and 1.43 times higher than pure aramid fabrics. Moreover, the basket-weave aramid fabric immersed in the STF/MWCNTs system containing 12 nm SiO2have the maximum quasi-static spike stab resistance of 17.12 MPa compared to other textures of fabrics, which is 1.05 times higher than those immersed in the 75 nm SiO2STF/MWCNTs (SM75) system and 1.33 times higher than that of pure basket aramid fabrics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call