Abstract

The rheological properties of wheat flour under processing such as extrusion (with 28% moisture content, wet basis) are influenced by the molecular changes its components undergo during processing. But, there was no simple relationship between the wheat-flour characteristics and their rheological properties. In order to investigate the quantitative and qualitative effects of the individual flour components on rheological properties, model blends of wheat starch and wheat gluten with different starch/gluten ratios were studied. The effects of gluten and starch quality were also investigated by using different gluten types and by modifying the amylose content of starch, respectively. The shear viscosity of the blends, determined by capillary rheometry under controlled conditions (35% moisture content, 140 °C), was observed to be modified by both gluten and amylose content. The changes undergone by wheat gluten under these conditions were analysed by HPLC, to determine the levels of unextractable polymeric proteins, and by Lab-on-a-Chip analysis of protein composition, to follow the polymerisation of protein under processing. This study indicated that in low hydrated products in the molten state, shear viscosity is affected by the structure of the blends as determined by fluorescence microscopy and by the molecular changes occurring during processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call