Abstract

A novel magnetorheological vibration isolator with two operating conditions, horizontal shear and vertical compression, was designed and manufactured. The rheological properties of the energy-dissipating material were directly related to the volume fraction of iron powder in the laminated working unit of the magnetorheological vibration isolator. Aggregation of the carbonyl iron powder (CIP) strongly influenced on the rheological properties of the magnetorheological vibration isolator. Considered that the curing temperature affected the preparation process, polyurethane rubber was selected as the collective matrix of the magnetorheological elastomer (MRE) because of its wear resistance, good adhesion, high strength, corrosion resistance and solvent resistance. The dynamic properties of the polyurethane rubber MREs were experimentally characterised. A mathematical model was established for the magnetic induction effect (MIE) of the polyurethane magnetorheological isolator in a transverse shear deformation mode as well as a vertical tension and compression deformation mode. The magnetorheological effect was strongest under transverse shear deformation for an effective volume fraction of particles of 34% because of the effect of aggregation of the iron powder particles. The magnetic compression modulus depended strongly on the strain under vertical compression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.