Abstract
The rheological properties of two types of commercial peanut butter have been studied. Both products are concentrated suspensions, and differ by the presence of additives. The first type, referred to as “100% peanuts,” is an unstabilized suspension consisting of solid peanut particles in peanut oil which is a Newtonian fluid. The second type, referred to as “smooth,” consists of the same suspension stabilized with a vegetable oil and contains other ingredients such as salt and sugar in very small quantities. A mean volume particle diameter of 6.6 μm has been determined, the particle diameter distribution was found to be narrow, and the solids volume fraction was estimated to be 0.6. Slip encountered in rheometry was greatly reduced by gluing sandpaper to the parallel plates of the rheometer. Both samples behaved like plastic materials and apparent yield stresses of 24 Pa and 370 Pa have been determined for the unstabilized and the stabilized suspensions, respectively. No linear domain was found for both suspensions and the non-linearity was confirmed by deformed Lissajous curves and higher odd harmonics in the output signal of small amplitude oscillatory shear experiments. The stabilized suspension behaved more like a solid, the elastic modulus being larger than the loss modulus and almost independent of the frequency. This solid-like behavior is supposedly caused by strong repulsive (steric) forces induced by the stabilizing agent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.