Abstract

Rheological properties of fine-grained sediments depending on index properties and salinity were examined. To characterize flow behaviors as a function of soil type, groups were made for convenience: (i) low-activity clays (group 1), (ii) high-activity clays (group 2), and (iii) silt-rich soils (especially for iron tailings; group 3). Low-activity and high-activity clays have characteristics of pseudoplastic (shear thinning) fluids, and exhibit a decrease in viscosity with increasing shear rate. However, in terms of the change in soil structure due to particle–particle interactions, illitic and montmorillonitic clays have opposite responses to salinity. As most of our data were obtained on low-activity clays — mostly illitic mixtures — we implemented a test program to ascertain the influence of montmorillonite on flow behavior. Using the Bingham model, a simple relationship is presented in terms of the possible critical limits of rheological transitions from clay- to silt- to sand-rich soils.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.