Abstract

ABSTRACT Good spreadability is a highly desirable quality for crystallized honey used in product applications. In this study, we processed Taiwanese liquid litchi honey into crystallized honey by adding a new nuclei material, namely 0.1% (w/w) glucose powder, instead of the traditional 5–10% (w/w) natural nuclei. Rheological properties of the resulting product were determined during heating and cooling utilizing small amplitude oscillatory shear to assess spreadability. As the product was heated, it exhibited decreased consistency and improved fluidity (evidenced by decreasing storage modulus [G′] and loss modulus [G″] values) and three distinct regions within the G′curve (“softening,”“crystalline plateau” and “melting”). As the product was cooled from 55 to 0C, moduli were lower than those obtained during heating, and the product did not exhibit the three G′curve regions across the temperature range. Therefore, we observed incomplete reversible crystallization and rheological properties during temperature migration. Flow properties of crystallized honey in the 0∼25C temperature range could be successfully predicted using the Herschel–Bulkley model (R2 > 0.97). However, the product approached Newtonian flow behavior as temperatures neared the upper end of this range. Higher viscosity and lower yield stress were observed at temperatures below 15C. The crystallized honey developed for this study exhibited shear‐thinning properties desirable in honey products intended to be spread.PRACTICAL APPLICATIONSCrystallized honey is traditionally prepared by introducing 5–10% natural nuclei into liquid honey. Our lab developed a new method that replaces the natural nuclei with glucose powder, which, at 0.1% (w/w), produces a good quality creamed honey that, in commercial production, offers the potential for significant production cost advantages. As crystallized honey is used in commercial/consumer applications as a spread, its dynamic rheology is of both academic and industrial interest. In this study, we discuss the physical properties of the crystallized honey developed using glucose powder to help better identify the factors and variables involved in honey spreadability and thus facilitate the development of better honey products with more desirable spreadability profiles. This study also provides a rheological properties and spreadability database for crystallized honey that reflects the range of temperature changes that can be expected to occur during normal product storage and use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.