Abstract
Properties of condensed milks prior to spray drying dictate to a large extent the functionality of the resulting milk powder. Rheological properties of concentrated skim milk, with total solids content of 45% but different mineral content, were studied as a function of shear rate and storage time at 50°C. These milks are proposed as a model to study the effects of minerals on rheology and age gellation of condensed milk prior to drying. During storage of the concentrated milk, the apparent viscosity, particularly after 4h, increased markedly at all shear rates studied. The yield stress also increased steeply after 4h of storage at 50°C. The changes in apparent viscosity of concentrated milk stored for up to 4h were largely reversible under high shear, but irreversible in samples stored for longer time. The appearance of yield stress suggested the presence of reversible flocculation arising from weak attraction between casein micelles, with a transition from reversible to irreversible aggregation during storage. Particle size analysis confirmed irreversible aggregation and fusion of casein micelles during storage. Gradual reduction of mineral content of concentrated milks resulted in a marked decrease in the apparent viscosity and casein micelle aggregation during storage, while addition of minerals to milk had the opposite effect. The results demonstrated that the soluble mineral content is very important in controlling the storage-induced changes in the rheology of concentrated milks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.