Abstract
Protein-polysaccharide complexes are commonly applied in different food products. Their interaction and their functional properties that arise as a consequence of interactions are remarkably influenced by the presence of co-solutes in the system. In this study, general rheological properties and the aggregation behavior of cress seed mucilage (CSM)-β-lactoglobulin (Blg) complexes were studied in the presence of sucrose (5–20% w/v) and lactose (5–20% w/v). The highest values of apparent viscosity and stability (zeta potential) in CSM-Blg complexes were measured when the medium contained 5% w/v lactose (10.00 Pa.s at 0.1 s−1, −25 ± 0.8 mV) and 20% w/v sucrose (12.89 Pa.s at 0.1 s−1, −35 ± 0.2 mV). The results of oscillatory experiments indicated that the gel-like feature of the complexes improved, parallel to a decrease in frequency, which highlighted the shear-induced gelation phenomenon. The thermal analysis test demonstrated that the thermal stability of Blg (70.5◦C), with its complexation to CSM, improved through denaturation. Also, the association of CSM-Blg (82◦C) nanocomplexes with lactose (96◦C) can enhance the thermal stability more effectively. Considering the widespread use of protein-polysaccharide complexes in diverse sugar-containing food formulations, the results of this study can contribute to the creation of new compounds with special techno-functional features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.