Abstract

The present research focuses on the effect of the concentration and dextrose equivalent (DE) values of tapioca maltodextrin in the aqueous phase on rheological behavior and stability of oil-in-water emulsions prepared with Tween80. The critical flocculation concentrations (CFCs) of oil-in-water emulsions containing tapioca maltodextrin with DE of 16 (DE16), 12 (DE12) and 9 (DE9) were 11%, 9% and 7% (w/w) respectively, as revealed by transmittance measurement. Coalescence was observed as maltodextrin concentration increased above the CFC. The rheological parameters of flow behavior index (n) and consistency index (k) have been well-described by the Herschel–Bulkley model. The relative consistency index (krelative) increased markedly when the concentration of maltodextrin exceeded the CFC because of depleting flocculation. The consistency index (kemulsion) and yield stress (τ0) of emulsions containing tapioca maltodextrin increased with increasing maltodextrin concentration or decreasing DE. The emulsions containing maltodextrin showed Newtonian flow behavior when the maltodextrin concentration was below the CFC. At maltodextrin concentrations above the CFC, emulsions containing maltodextrin exhibited shear thinning behavior. An increase in the maltodextrin concentration resulted in a decrease in the nemulsion until maltodextrin concentration reached 20% (w/w) for DE9, DE12 and 25% (w/w) for DE16. Further increase in the maltodextrin concentration resulted in an increased the nemulsion because of predominant influence of the continuous phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.